Polymorph Cookie Details

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site.... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Why quality IoT data is critical for predictive maintenance and how it can be achieved

Our previous post concluded with the following statement: “Garbage in, garbage out” and highlighted that for predictive maintenance to be effective, you need refined, quality data. When data is “dirty” or fragmented you will not only have to spend a significant amount of time to turn it into useful information, but you will not be able to “prove” the desired operational impact for which your predictive maintenance strategy was established. The data component is often considered trivial – “just plug it in and it works”. Unfortunately, it is not that simple. Data is often either stored in various different places or is of poor quality or irrelevant to solving a specific problem. Businesses are therefore drowning in data that must be scrubbed to render it useable to the extent that it can be measured to support predictive maintenance decisions that are driven by accurate information. To achieve one single, complete view of IoT data requires accumulation from multiple sources and systems, which has put data quality squarely back in the spotlight.

However, before getting into how to achieve quality data, two further considerations bear mention. First, there are many different types of data: People movement, machine vibrations, temperature,  current, voltage, power, speed, torque, depth, height, volume to name but a few. For all these different types of data, the first step is always clean it up and see what can be used. Only then can it be determined what data is needed (and usable) for accurate analysis. For example, if your goal is to measure temperature and vibration it might be required to add extra sensors. Secondly, the frequency of the data measurement should be kept in mind, that is, how often do we need to measure? Real-time, every minute, hourly, weekly, and so forth. 

So how do organisations deliver an accurate, single view of data? We look at 3 steps to improve data quality:

  1. Eliminate data silos
  2. Clean data properly
  3. Master data governance

 

Given these numbers, there has been an increased focus on reducing operational costs and asset downtime. One of the ways in which to achieve this is by using predictive maintenance. And, with Market Research Future predicting that the global predictive maintenance market is expected to grow to approximately $6.5 billion by 2022, it’s time to join the conversation on predictive maintenance and the benefits it boasts. 

1. Eliminate data silos

Employing an analytics-driven approach to maintenance and incorporating data across different industrial control systems, sensors, and applications will see companies eliminate data silos. They can do so by securely automating the pushing of data to a central cloud-based platform that is flexible, scalable and secure.

2. Clean data properly

To maximise the accuracy of system data it is important that companies invest sufficient time to clean data. This means they have to ensure that the data is correct, consistent and useable by detecting any errors and correcting them to avoid a recurrence. The cleansed data then can be used to drive actionable insights.

3. Manage data governance

For companies to establish and enforce effective data governance processes and procedures, it is essential that they know where their data is, who has access to it and how is it being used. 

In our next post, we will look at four reasons why predictive analytics is beneficial for growing your business. 

If you enjoyed this post these topics might also interest you:

An introduction to predictive maintenance

Case study: Polymorph assists international manufacturers with predictive maintenance using advanced IOT and machine leaning

How can an IOT strategy assist in measuring, managing business productivity, and ultimately translate productivity into profitability? 

 

Planning to build an app? 

Try our free software development calculator to maximise your ROI.